2
Surface Integrals - (Over a Plane)
Review of Double Integrals

(1)
 EQ \i(,, )\d\ba6()\i(R,, ) f(x, y) dA  =   EQ \i(c,d, )\d\ba4()\i(  a,  b, ) f(x, y) dx dy

[image: image1]
(2)
 EQ \i(,, )\d\ba6()\i(R,, ) f(x, y) dA  =   EQ \i(a,b, )\b\bc\{( \i(g(x),h(x), )f(x, y) dy )  dx

or
 EQ \i(,, )\d\ba6()\i(R,, ) f(x, y) dA  =   EQ \i(c,d, )\b\bc\{( \i(p(y),q(y), )f(x, y) dx )  dy
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[Example]      Find  EQ \i(,, )\d\ba6()\i(R,, )(x2 + y2)  dA  for 



R  =  { (x, y):  0  x  1 and x2  y   EQ \r(x)   }

[Solution]

The region R of the integration is illustrated in the following figure:
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x ranges between
Oand 1





 EQ \i(,, )\d\ba6()\i(R,, )(x2 + y2)  dA  =   EQ \i(0,1, )\i(x2,\r(x), )(x2 + y2 )  dy dx  =   EQ \f(18, 105 ) 
[Question]
How to evaluate  EQ \i(,, )\d\ba6()\i(R,, ) f(x, y) dA?  if R is given in the following? 

[image: image4.wmf] 


Reversing the Order of Integration
[Example]
[image: image5.png]» <

x ranges between
Oand 1




 EQ \i(,, )\d\ba6()\i(R,, )(x2 + y2)  dA  =   EQ \i(0,1, )\i(x2,\r(x), )(x2 + y2 )  dy dx  

=   EQ \i(0,1, )\i(y2,\r(y), )(x2 + y2)  dx dy=   EQ \f(18, 105 ) 
[Example]    EQ \i(1,2, )\i(1,x2, )(x/y)  dy dx
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 EQ \i(1,4, )\i(\r(y),2, )(x/y)  dx dy

[Exercise]
Show that   EQ \i(0,2, )\i(y,2, )  e EQ \s\up8(x2)  dx dy  =   EQ \i(0,2, )\i(0,x, ) e EQ \s\up8(x2)  dy dx

Change of Variables (Change of Coordinates)
-------------------------------------------------------------------------------------------------------

First let us consider a 1-D integration:


 EQ \i(a,b, f(x) dx) 
if
x = x(u),   then
(
dx  =   EQ \f(dx, du )   du

thus
 EQ \i(a,b, f(x) dx) 

(
 EQ \i(a,b, f(x(u)) \f(dx, du ) du ) 
where  and  are given in x() = a  and  x() = b.

-------------------------------------------------------------------------------------------------------
Now for a surface integral,


 EQ \i(,, )\d\ba6()\i(R,, ) f(x, y) dx dy

if
x  =  x(u, v);     y  =  y(u, v)
What is  EQ \i(,, )\d\ba6()\i(?,, ) ?? du dv  ??

Since  dA = dx dy,  we need to find dA = ?? du dv

where u and v can be considered as new coordinates.

dA = | eu du ( ev dv |

and
eu  =   EQ \f((r, (u )   =   EQ \f((x, (u )  i  +   EQ \f((y, (u )  j   

(2-D)


ev  =   EQ \f((r, (v )   =   EQ \f((x, (v )  i  +   EQ \f((y, (v )  j
Thus,


eu ( ev  =   EQ \b\bc\{( \f((x,(u) \f((y,(v) - \f((x,(v) \f((y,(u) )  k
· dA = | eu du ( ev dv | =  EQ \b\bc\|( \b\bc\{( \f((x,(u) \f((y,(v) - \f((x,(v) \f((y,(u) ) )  du dv
· dA =  EQ \b\bc\|(\f(((x,y), ((u,v) ))  du dv

where
 EQ \b\bc\|(\f(((x,y), ((u,v) ))   =  | Jacobian |  =   EQ \b\bc\║(\a\co2\hs8\vs8( (x/(u, (x/(v, (y/(u, (y/(v) ) 
(
 EQ \i(,, )\d\ba6()\i(R,, ) f(x, y) dx dy  =   EQ \i(,, )\d\ba6()\i(R*,, ) f(u, v)  EQ \b\bc\|(\f(((x,y), ((u,v) ))  du dv
[Example]


 EQ \i(,, )\d\ba6()\i(R,, ) f(x, y) dx dy  =    EQ \i(,, )\d\ba6()\i(R*,, ) ?? dr d
Since
x = r cos,   y = r sin(polar coordinates)

J =  EQ \f(((x, y), ((r, q) )   =  EQ \b\bc\|(\a\co2\hs8\vs8( cosq, -rsinq, sinq,  rcosq) )   = r
(
 EQ \i(,, )\d\ba6()\i(R,, ) f(x, y) dx dy  =    EQ \i(,, )\d\ba6()\i(R*,, ) f(r, ) r dr d
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EXAMPLE 1

Fig. 211. Double integral as volume

Applications of Double Integrals

Double integrals have various geometrical and physical applications. For example, the
area A of a region R in the xy-plane is given by the double integral

A= ffdxdy.
R

The volume V beneath the surface z = f(x, y) (> 0) and above a region R in the xy-plane
is (Fig. 211)

v=[[feydray,
R

because the term f(x;,, v;.) AA,, in J,, at the beginning of this section represents the volume
of a rectangular box with base AA,, and altitude f(x;, yj).

Let f(x, y) be the density (= mass per unit area) of a distribution of mass in the
xy-plane. Then the total mass M in R is

M = Jff(x, y) dx dy;
R
the center of gravity of the mass in R has the coordinates X, y, where
=5 )] =3l d
X= " xf(x, y)dedy  and y =5 ’ yf(x, y) dx dy;

the moments of inertia /, and I, of the mass in R about the x- and y-axes, respectively,
are

L= [ yavay, 1= [ [0 ) dray;
R

R

and the polar moment of inertia /, about the origin of the mass in R is

lo=1,+1,= [ [+ y)fx, y) dudy
R
Center of gravity. Moments of inertia

Let f(x, y) = 1 be the density of mass in the region R: 0 =y = V1 — xz, 0 = x = 1 (Fig. 212). Find the
center of gravity and the moments of inertia I, I, and Io.

Solution. The total mass in R is obtained as the double integral
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Fig. 212. Example 1

V1—-x2 1 72
dy

M=ffdxdy=f01|:f0 dx=f0 l—xzdx=f0 00529d6=%
R

(x = sin 6), which is the area of R. The coordinates of the center of gravity are

X=%ffxdxdy=%f:[fo@xdy}dx=%f: 1 — %% =——Jz dz =

R

(V1 - 2= 7), and y = X, for reasons of symmetry. Furthermore,

(\/l—x) dx

V1—x2
y d

L= [fraa=[|

/2

_ 4 =T
= o cos 6d0—16, 1

T T
v =16 ° IO=Ix+Iy=§~O.3927.

These integrations will become much simpler if we first make a suitable change of variables. This is what we
show next. ) |

Change of Variables in Double Integrals. Jacobian

Practical problems often require a change of the variables of integration in double integrals.
Recall from calculus that for a definite integral the formula for the change from x to u is

b B d
5) [ f@dx = [ oty -

Here we assume that x = x(u) is continuous and has a continuous derivative in some
interval & = u = B such that x(a) = a, x(8) = b [or x(a) = b, x(B) = a] and x(u) varies
between a and b when u varies between « and (.

The formula for a change of variables in double integrals from x, y to u, v is

ax, y)

| du dv;
a(u, v)

©) fhuww@—JHMuwﬂum‘

that is, the integrand is expressed in terms of u and v, and dx dy is replaced by du dv
times the absolute value of the Jacobian®

3Named after the German mathematician CARL GUSTAV JACOB JACOBI (1804—1851), known
for his contributions to elliptic functions, partial differential equations, and mechanics.
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Here we assume the following. The functions

x =x(u,v), y=yWuv)

effecting the change are continuous and have continuous partial derivatives in some region
R* in the uv-plane such that for every (u, v) in R* the corresponding point (x, y) lies in
R and, conversely, to every (x, y) in R there corresponds one and only one (&, v) in R*;
furthermore, the Jacobian J is either positive throughout R* or negative throughout R*.
For a proof, see Ref. [5] in Appendix 1.

Of particular practical interest are polar coordinates r and 6, which can be introduced
by setting x = rcos 6, y = rsin 6. Then

9% y) cos § —rsin @
T= e T =¥
ol 0 sin 6 rcos 0
and
t)] fff(x, y)dxdy = fJf(r cos 0, rsin 6) r dr d6
R R*

where R* is the region in the rf-plane corresponding to R in the xy-plane.

EXAMPLE 2 Double integral in polar coordinates
Using (8), we obtain for 7, in Example 1

I, = ffyzdxdy = J-:/zfolrz sin? @ rdr df = J-:/zsin2 0do folrg dr = % % = % . |
R

EXAMPLE 3 Change of variables in a double integral
Evaluate the following double integral over the square R in Fig. 213.

J’J-(x2 + y2) dx dy
R

Solution. The shape of R suggests the transformation x + y = u, x — y = v. Then x = %(u +u),y= %(u —0),
the Jacobian is

= 3w o) =

ax y) ’

Nl= NI

Fig. 213. Region in Example 3




[image: image10.jpg]484

Vector Integral Calculus. Integral Theorems Chap. 9

R corresponds to the square 0 = u = 2, 0 = v = 2, and, therefore,

f f «® + y*) dxdy = ij:%(“z +vi)dudy = 3§, <
R

This is the end of our review on double integrals. These integrals will be needed in this
chapter, beginning in the next section.

oo N PHT TN

Double Integrals
Describe the region of integration and evaluate. (Show the details of your work.)

2 4
1. f f 2%+ y®) dx dy 2. As Prob. 1, order reversed
070
3 .y
3. f f 2 + y®) dx dy 4. As Prob. 3, order reversed
0" —y
4 Ysin y 4 .cos x
5.f f — dx dy 6.f f xy dy dx
0 o VY 0 sin
2y
7. f f sinh (x + y) dxdy 8. As Prob. 7, order reversed
070
5 a2 w4 .cosy
9. f J (1 + 2x)e**Y dy dx 10. f f xZsin y dx dy
170 o Jo

Applications

Volume. Find the volume of the following regions in space.

11. The region beneath z = 4x% + 9y2 and above the rectangle with vertices (0, 0), (3, 0), (3, 2),
©,2)

12. The first octant region bounded by the coordinate planes and the surfacesy = 1 — x%,z =1 — x

13. The first octant section cut from the region inside the cylinder x2 + z2 = a2 by the planes
y=0,z=0,x=y

2

Center of Gravity. Find the coordinates X, y of the center of gravity of a mass of density f(x, y) = 1
in a region R, where R is

14. The triangle with vertices (0, 0), (b, 0), (b, h)

15. The region x2 + y2 = 42 in the first quadrant

16. Check the result in Prob. 15 using polar coordinates

Moments of Inertia. In Probs. 17-20 find the moments of inertia I,, I,, I of a mass of density
f(x, ) = 1 in a region R shown in the following figures (which the engineer is likely to need, along
with other profiles listed in engineering handbooks).

17. ¥ 18. ¥

=
NS -




Green's Theorem in the xy-Plane  
  EQ \i(,, )\d\ba6()\i(R,, ) dA 
[image: image11.wmf]Û

  EQ \i(C, , ) ds 
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R:  region,    

[image: image13.wmf]1

C

:  outer boundary,  counterclockwise!

[image: image14.wmf]2

C

:  inner boundary,  clockwise!

Simple Curve:  A curve C is called simple if it does not cross itself.

[image: image15.png]D ~ v O L

(a) (b) (<) (d) (e)
Closed, simple Not closed, simple Not closed, Closed, not Closed, simple
not simple simple




Simply Connected Region:  
If C is a simple closed curve contained in region R, then every point in the region enclosed by C is also in region R (i.e., no holes in region R)

[image: image16.png]Every point on this
line segment is removed

(a) (b) (¢) (d) (e)
Simply connected Not simply connected Not simply connected Not a region Simply connected
(region has a hole) (A point is missing (not connected)

in this “punctured disk’’)




Green's Theorem: If R is a plane region bounded by a finite number of simple closed curves, and if F1(x, y), F2(x, y), (F1/(y and (F2/(x are continuous at all points of R and its boundary C, then
 EQ \x( \i(,, )\d\ba6()\i(R,, )\b\bc\[( \f( (F2 ,(x) - \f( (F1 ,(y) ) dx dy  =  O\d\ba9()\i(C, , )F1 dx + F2 dy ) 
[Partial Proof]

Let us consider the 2nd LHS term first, i.e., the integral   EQ \i(,, )\d\ba8()\i(R,, )\b\bc\[( - \f((F1,  (y  ) )  dA .  
Let us consider a special region, i.e., 
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 EQ \i(,, )\d\ba8()\i(R,, )\b\bc\[( - \f((F1,  (y  ) )  dA  =  -  EQ \i(a,b, )\i(g1(x),g2(x), ) \f( (F1 ,  (y  )  dy dx

=  -   EQ \i(a,b, ) [ F1( x , g2(x) )- F1( x , g1(x) )] dx

=    EQ \i(a,b, ) [ F1( x , g1(x)) - F1( x , g2(x)) ] dx

=   EQ \i(a,b, ) F1( x , g1(x) ) dx  +   EQ \i(b,a, ) F1( x , g2(x) ) dx
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=  O EQ \d\ba9()\i(C, , F1(x,y) dx)   
If 
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Fig. 217.  Proof of Green’s theorem




 EQ \i(,, )\d\ba8()\i(R,, )\b\bc\[( - \f((F1,  (y  ) )  dA  
=
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Similarly, by considering the special region 
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we can express the 1st LHS term as

 EQ \i(,, )\d\ba8()\i(R,, )\b\bc\[( \f((F2,  (x  ) )  dA =    O EQ \d\ba9()\i(C, , F2(x,y) dy)   
Thus, we have


 EQ  \i(,, )\d\ba6()\i(R,, )\b\bc\[( \f( (F2 ,(x) - \f( (F1 ,(y) ) dx dy  =  O\d\ba9()\i(C, , )F1 dx + F2 dy  
 EQ \x( \i(,, )\d\ba6()\i(R,, )\b\bc\[( \f( (F2 ,(x) - \f( (F1 ,(y) ) dx dy  =  O\d\ba9()\i(C, , )F1 dx + F2 dy ) 
[image: image26.jpg]488
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EXAMPLE 2

EXAMPLE 3

X

Fig. 218. Proof of Green’s theorem

We now prove the theorem for a region R that itself is not a special region but can be
subdivided into finitely many special regions (Fig. 218). In this case we apply the theorem
to each subregion and then add the results; the left-hand members add up to the integral
over R while the right-hand members add up to the line integral over C plus integrals over
the curves introduced for subdividing R. Each of the latter integrals occurs twice, taken
once in each direction. Hence these two integrals cancel each other, and we are left with
the line integral over C.

The proof thus far covers all regions that are of interest in practical problems. To prove
the theorem for the most general region R satisfying the conditions in the theorem, we
must approximate R by a region of the type just considered and then use a limiting process.
For details of this see Ref. [5] in Appendix 1. <

Further Applications of Green’s Theorem

Area of a plane region as a line integral over the boundary
In (1) we first choose F; = 0, Fg = x and then F; = —y, Fg = 0. This gives

fRfdx dy = jgcxdy and Lfdx dy = —3gcydx,

respectively. The double integral is the area A of R. By addition we have

1
@ A=5$ (dy—ya,

where we integrate as indicated in Green’s theorem. This interesting formula expresses the area of R in terms
of a line integral over the boundary. It has various applications; for instance, the theory of certain planimeters
(instruments for measuring area) is based on it.

For an ellipse x%a® + yz/b2 =lorx=acost,y=hsintwegetx = —asint, y' = bcost thus from
(4) we obtain the familiar result

1 p2m ’ ' 1 P 2 2
AZEJ;) (xy *)’X)dfszo [abcos t — (—ab sin t)]dl:ﬂ'ab. |

Area of a plane region in polar coordinates

Let r and 6 be polar coordinates defined by x = rcos 6, y = rsin 6. Then

dx = cos Odr — rsin 0d6, dy = sin Odr + rcos 0d6,




Area enclosed by R can be calculated by  EQ \i(,, )\d\ba8()\i(R,, ) dA

But by Green's theorem,


 EQ \i(,, )\d\ba8()\i(R,, ) dA =  O EQ \d\ba9()\i(C, , ) x dy  =  O EQ \d\ba9()\i(C, , ) - y dx  =   EQ \f(1, 2 )  O EQ \d\ba9()\i(C, , )(- y dx + x dy) 
[Example]   

For example, the area enclosed by the ellipse


(x2/a2) + (y2/b2) = 1

can be calculated by letting


r(t)  =  a cos t i  + b sin t j,
0  t  2 
(
A =   O EQ \d\ba9()\i(C, , ) x dy  =   EQ \i(0,2p, ) a cos t d( b sin t )  =   a b
Area of a Plane Region in Polar Coordinates
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[Example] 
[image: image28.jpg]Fig. 219. Cardioid





[image: image29.wmf](

)

2

2

2

2

0

Cardioid:   (1cos) and 02

3

1cos

22

ra

a

Ada

p

qqp

p

qq

=-££

=-=

ò


Green Theorem in Scalar Form
 EQ \x( \i(,, )\d\ba6()\i(R,, )\b\bc\[( \f( (F2 ,(x) - \f( (F1 ,(y) ) dx dy  =  O\d\ba9()\i(C, , )F1 dx + F2 dy ) 
Vector Forms of Green's Theorem:
(i)
If we have   


F  =  Fx i + Fy j
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then
 EQ \f( (Fy , (x )   -   EQ \f( (Fx , (y )   =  (((F)•k
since
Fx dx + Fy dy  =  F•dr
(
 EQ \x(  \i(,, )\d\ba6()\i(R,, )((´F)•k dx dy  =  O\d\ba9()\i(C, , )F•dr ) 
(ii)
Let n be the outward unit normal vector of Curve C and r be the position vector of a point on Curve C:

[image: image31.wmf] 
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r  =  x i + y j
and
u (unit tangent vector)  =   EQ \f(dr, ds )   =   EQ \f(dx, ds )  i +  EQ \f(dy, ds )  j

n (unit normal vector)  =   EQ \f( dy ,ds)  i -   EQ \f(dx, ds )  j    
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If we let

F = F2 i - F1 j
then
F•n 
[image: image33.wmf](
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 =  F2  EQ \f(dy, ds )   +  F1  EQ \f(dx, ds )   
Thus,
RHS=F1 dx + F2 dy  =  (F•n) ds

but
(•F  
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 =  EQ \f((F2, (x )   -   EQ \f((F1, (y ) =LHS
thus, Green Theorem  EQ \i(,, )\d\ba8()\i(R,, )\b\bc\[( \f((F2,(x) - \f((F1,(y) )  dx dy  =  O EQ \d\ba9()\i(C, , ) F1 dx + F2 dy

becomes


 EQ \x( \i(,, )\d\ba8()\i(R,, )(•F dx dy  =  O\d\ba9()\i(C, , )F•n ds ) 


(iii)
Let  F = F2 i - F1 j  where, F1  =  -  EQ \F((w, (y )    and F2  =   EQ \f((w, (x ) 
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  EQ \f((w, (x )  i  +   EQ \f((w, (y )  j =( =grad 
then  LHS =
 EQ \f((F2, (x )   -   EQ \f((F1, (y )   = 
[image: image37.wmf]Ñ·

F

=  EQ \f((2w, (x2 )   +   EQ \f((2w, (y2 )   =  (2

also, 
RHS = O EQ \d\ba9()\i(C, , )( F1 dx + F2 dy )   
=  O EQ \d\ba9()\i(C, , )\b\bc\[( F1 \f(dx, ds ) + F2 \f(dy, ds ) )  ds


=  O EQ \d\ba9()\i(C, , )\b\bc\{( - \f((w, (y ) \f(dx, ds ) + \f((w, (x ) \f(dy, ds ) )  ds

But;  
n  =   EQ \f(dy, ds )  i -  EQ \f(dx, ds )  j
(
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=-  EQ \f((w, (y ) \f(dx, ds )  +  EQ \f((w, (x ) \f(dy, ds )   =  (•n  (   EQ \f((w, (n ) 
where (/(n  =  directional derivative of  onto n.


 EQ \x( \i(,, )\d\ba8()\i(R,, )(2w dx dy  =  O\d\ba9()\i(C, , )\f((w, (n ) ds ) 
Applications of Green's Theorem (over a Plane)
[Example]

Evaluate the line integral over a closed curve C


O EQ \d\ba9()\i(C, , )( x2 - y2 ) dx + ( 2 y - x ) dy

where C consists of the boundary of the region in the first quadrant that is bounded by the curves of y = x2 and y = x3.
[Solution]
The Green's theorem states that


 EQ \i(,, )\d\ba8()\i(R,, )\b\bc\[( \f((F2,(x) - \f((F1,(y) )  dA =  O EQ \d\ba9()\i(C, , )F1 dx + F2 dy
where F1 =  x2 - y2,  F2  =  2 y - x , and  (F2/(x  =   1 , (F1/(y  =   2 y ; thus,


O EQ \d\ba9()\i(C, , )F1 dx + F2 dy  =   EQ \i(,, )\d\ba8()\i(R,, )\b\bc\[( \f((F2,(x) - \f((F1,(y) )  dA  =   EQ \i(,, )\d\ba8()\i(R,, )( - 1 + 2 y )  dA



=   EQ \i(0,1, )  EQ \i(x3,x2, ) (  1 + 2 y ) dy dx  =     EQ \f( 11 ,  420  ) 
[Example]

Evaluate  O EQ \d\ba9()\i(C, , )( x3 + 3 y ) dx + ( 2 x - ey3 ) dy , 
where C is the circle ( x - 1 )2 + ( y - 5 )2  =  4.

[Solution] 
Here F1  =  x3 + 3 y , F2 = 2 x - ey3, and (F2/(x  =   , (F1/(y  =  3; thus,


O EQ \d\ba9()\i(C, , )F1 dx + F2 dy  =   EQ \i(,, )\d\ba8()\i(R,, )\b\bc\[( \f((F2,(x) - \f((F1,(y) )  dA  =   EQ \i(,, )\d\ba8()\i(R,, ) - 1  dA  =  - A

Since the area of the region R bounded by the circle of radius 2 is 4 , we have


O EQ \d\ba9()\i(C, , )( x3 + 3 y ) dx + ( 2 x - ey3 ) dy  =  - A  =  - 4 
2. Surface Integrals - (in Space)
Representations of Surfaces (Parametric)
[image: image39.png]Parametric representations of a curve and a surface

Curve C
In space

Surface S
r(u,v) in space

u
3>

(uv-plane)




Curve in x-y Plane
Surface in 3-D Space

y = f(x)
z = f(x, y)


g(x, y)  =  0  (e.g., x2 + y2 = 1; x+y=1)
g(x, y, z) = 0  (e.g., x2 + y2 + z2 = 1; x+y+z=1)

r = r(t) 
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[image: image41.wmf](,)(,)(,)

xuvyuvzuv

=++

ijk

, 

u, v: parameters

Curve in 3-D Space
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[image: image43.png]Parametric representation Parametric representation
of a Cy"nder of a Sphere




[Example]      The surface of a circular cylinder  
x2 + y2  =  R2,   -1  z  1 ;          (see upper left figure)
The parametric representation of the above surface is


r(u, v)  =  R cos u i + R sin u j + v k,



0  u  2,   -1  v  1
[Example]
Sphere of radius R:  x2 + y2 + z2 = R2   (see upper right figure)


r(u, v)  =  R cos u cos v i + R sin u cos v j + R sin v k


0  u  2,   -/2  v  /2
Is the representation unique?  
No! For example, the sphere can also be represented by


r(u’, v’)  =  R cos u’ sin v’ i + R sin u’ sin v’ j + R cos v’ k



0  u  2,   0  v  

Here
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Tangent Plane and Surface Normal
[image: image46.png]Tangent plane and normal vector




Tangent Plane T(P):  A plane contains the tangents of all curves on S passing through P.

Curve C:

r(t)

Surface S:

r(u, v)

A curve on  surface S:       u = u(t),  v = v(t)  and   EQ \o(r,\s\up1(˜))(t) =  r(u(t), v(t))

[Example] 
Surface of cylinder:  r(u, v)  =  a cos u i + a sin u j + v k
A helix on the surface:  u = t,    v = c t  can be represented by

 EQ \o(r,\s\up1(˜))(t)  =  a cos t i + a sin t j + c t k
Curve r(t)
(
tangent vector:  r'(t)

Curve on Surface  EQ \o(r,\s\up1(˜))(t)
(
tangent vector:   EQ \o(r,\s\up1(˜))'(t)


or
 EQ \o(r,\s\up1(˜))'(t)  =  r,\s\up1(˜)) EQ \f(d, dt )
  =   EQ \f((r, (u ) \f(du, dt )   +   EQ \f((r, (v ) \f(dv, dt ) 



= ru u' + rv v'

(ru and rv are tangential to S at P.
[image: image47.png]Tangent plane and normal vector




Tangent Plane T(P):  A plane contains the tangents of all curves on S passing through P.

A normal vector of a surface S at a point P is a vector perpendicular to the tangent plane of S at P.
Normal Vector, N
(
N = ru ( rv


(recall that N  ru and N  rv )

Unit Normal Vector, n
(
n =  EQ \f(N, | N | )   =   EQ \f(ru ´ rv, | ru ´ rv | ) 
In addition, if the surface S is represented by


g(x, y, z)  =  0

the unit normal vector can be calculated by ( recall the physical meaning of (g )


n =   EQ \f((g, | (g | ) 
[Example]
Find the equations of the tangent plane and normal line to the ellipsoid x2 + (y2/4) + (z2/9) = 3 at the point (1, 2, 3).

[Sol'n]



g(x, y, z)  =  x2 + (y2/4) + (z2/9) - 3  =  0


(g =  2 x i +  EQ \f(y, 2 )  j +  EQ \f(2z, 9 )  k

(g(1, 2, 3)  =  2 i + j +  EQ \f(2, 3 )  k   - gradient vector at (1, 2, 3)
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(i)
Tangent Plane expressed in the form 
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Tangent plane

\%:)

s





PQ  =  ( x - xo ) i + ( y - yo ) j + ( z - zo ) k 

=  ( x - 1 ) i + ( y - 2 ) j + ( z - 3 ) k
Since  PQ (g and 
[image: image51.wmf]f

Ñ

, where


(g = 
[image: image52.wmf]f

Ñ=

a i + b j + c k
i.e., we have


a ( x - xo ) + b ( y - yo ) + c ( z - zo )  =  0

or
a x + b y + c z  =  a xo + b yo + c zo
where a, b and c are the components of (g.

Now that in our case (g  =  2 i + j +  EQ \f(2, 3 )  k  at (1, 2, 3)

 
the tangent plane at (1,2,3) is


2 ( x - 1 ) + ( y - 2 ) +  EQ \f(2, 3 ) ( z - 3 )   =  0

or
2 x + y +  EQ \f(2, 3 )  z  =  6
(ii)
Normal Line expressed with parametric representation
[image: image53.png]t
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(x - xo) i + (y - yo) j + (z - zo) k =  t (g




(the same direction of (g)

Here, t is a parameter.

(x - 1) i + (y - 2) j + (z - 3) k  =  t ( 2 i + j +  EQ \f(2, 3 )  k)

or
r(position vector of a line)  =  x i + y j + z k


r(t)=  ( 2 t +1 ) i + ( t + 2 ) j + (  EQ \f( 2 t , 3 )  + 3 ) k



(Parametric representation)

since x = 2 t + 1,   y = t + 2,   z =  EQ \f(  2 t  , 3 )  + 3
(
t =  EQ \x( \f(x - 1, 2 )  =  \f(y - 2, 1 )  =  \f(  z  -  3  , \f( 2 ,  3  ) ) ) 



(symmetric equation of a line)

(iii)
Question:  What is the unit normal vector at point (1, 2, 3)?

n =   EQ \f((g, | (g | ) 
Methods of Calculation of Surface Integrals
The surface integral arises naturally in fluid-flow problems, where it gives flux across S (i.e., mass of fluid crossing S per unit time in the normal direction).  Specifically,
   EQ \i(,, )\d\ba8()\i(S,, ) v•n dA  =  mass flux across S
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Integration Method I - by parametric integration
Surface (piecewise smooth):  r(u,v)  =  x(u,v) i + y(u,v) j + z(u,v) k         Eq. (1)
Unit normal vector: 
n =  EQ \f(N, | N | )    where N =   ru ( rv                    Eq. (2)
For a given vector function F, the surface integral (flux integral) over S is
 EQ \x( \i(,, )\d\ba8()\i(S,, )F•n dA  =  \i(,, )\d\ba8()\i(R,, )F(r(u,v)) •N(u,v) du dv )        Eq. (3)

(Recall that dA = | ru ( rv | du dv  =  | N | du dv and 
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 EQ \x\bo\to\ri( =  \i(,, )\d\ba8()\i(R,, )( F1 N1 + F2 N2 + F3 N3 ) du dv )  Eq. (4)
 [Example] Calculate 
 EQ \i(,, )\d\ba8()\i(S,, ) F•n dA

where  S:
y = x2,   0  x  2,   0  z  3  
( parabolic cylinder )

            F:
F = y i + 2 j + x z k  (case 1)  or 
[image: image57.wmf]2
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[image: image58.png]



[Solution]
The parametric representation (set x=u and z=v) of the surface can be written as


r = u i + u2 j + v k
( 0  u  2,   0  v  3 )

and
ru  =  i + 2 u j

rv =  k

N = ru ( rv 
[image: image59.wmf]120
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Case 1: 
F  =  y i + 2 j + x z k  =  u2 i + 2 j + u v k

F•N = 2 u3 - 2


 EQ \i(,, )\d\ba8()\i(S,, ) F•n dA =  EQ \i(,, )\d\ba8()\i(R,, )  F•N du dv




=  EQ \i(0,3, )\i(0,2, )( 2 u3 - 2 )  du dv  =  12
Case 2:   
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 EQ \i(,, )\d\ba8()\i(S,, ) F•n dA =  EQ \i(,, )\d\ba8()\i(R,, )  F•N du dv
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[Example 2] Surface: 
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Position vector: 
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EXAMPLE 2

THEOREM 1

fSJF.ndA - foaf:(éuvz — Bdudo = f:(3u2v2 _ 6w

u=0

3
= f (1202 — 12)dv = @® — 12v) = 108 — 36 = 72 [meters®/sec]
0

3
v=

or 72 000 liters/sec. <

y

Fig. 225. Surface Sin Fig. 226. Portion of a plane
Example 1 in Example 2

Surface integral
Evaluate (3) when F = [xz, 0, 3y2] and S is the portion of the plane x + y + z = 1 in the first octant (Fig.
226).

Solution. Writing x = uandy = v, we have z =1 — x — y = 1 — u — v. Hence we can represent the plane
x +y + z=1Iin the form r(x, v) = [, v, | — u — v]. We obtain the first-octant portion S of this plane by
restricting x = u and y = v to the projection R of S in the xy-plane. R is the triangle bounded by the two
coordinate axes and the straight linex + y = 1;thus0=x=1-y 0=y= 1.

By inspection or by differentiation,

N=r,Xr,=[1,0-1]1%[0,1,—1] =11, 1.

Hence F(S)*N = [12, 0, 3v%]+[1, 1, 1] = u® + 302 By (3),

ffF-ndA = ff(uz + 3v2)dudv = folfol_v(uz + 3vz)dudv =f01|:%(1 - v)3 + 3v2(l - v)j| dv = %
S R
|

From (3) or (4) we see that the value of the integral depends on the choice of the unit
normal vector n. (Instead of n we could choose —n.) We express this by saying that such
an integral is an integral over an oriented surface S, that is, over a surface S on which
we have chosen one of the two possible unit normal vectors in a continuous fashion. (For
a piecewise smooth surface, this needs some further discussion, which we give below.)
If we change the orientation of S, which means that we replace n by —n, then each
component of n in (4) is multiplied by —1, so that we have

(Change of orientation)

The replacement of n by —n (hence of N by —N) corresponds to the multiplication of the
integral in (3) or (4) by —1.

How to effect such a change of N in practice if S is given in the form (1)? The simplest
way is to interchange u and v, because then r, becomes r, and conversely, so that
N=r, Xr, becomesr, X r, = —r, Xr, = —N, as wanted. Let us illustrate this.




Notice that the value of the surface integral depends on the choice of unit normal vector 
[image: image68.wmf]n

. In other words, it is an integral over an oriented surface S, i.e., over a surface S on which we have chosen one of the 2 possible unit normal vectors in a continuous fashion.
[Theorem 1] Change of Orientation

The replacement of n by –n corresponds to the multiplication of the surface integral, i.e., Eqs. (3) or (4), by -1. 

[Example 2]  Let us consider Case 2 in Example 1.  

Let us change  r = u i + u2 j + v k
( 0  u  2,   0  v  3 )
to  
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Orientable Smooth Surface:  If a surface S is smooth and P is any of its point, we may choose a unit normal vector n of S at P.  The direction of n is then called the positive normal direction of S at P.  Obviously there are 2 possibilities in choosing n.  A smooth surface is said to be orientable if the positive direction, when given at an arbitrary point 
[image: image72.wmf]0

P

 of S, can be continued in a unique and continuous way to the entire surface. 
A sufficiently small portion of a smooth surface is always orientable.

An example of non-orientable smooth surface: Mobius strip.
[image: image73.jpg]Sec. 9.6
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EXAMPLE 3

Change of orientation in a surface integral

In Example 1 we now represent S by ¥ = [v, vz, u], 0=v=20=u=3. Then

N = r, X ¥, =1[0,0, 1] X [1,2v, 0] = [-2v, 1,0]. For F = [312, 6, 6xz] we now get F(S) = [3u2, 6, 6uv],
Hence F(5)*N = —6u’v + 6 and integration gives the old result times —1,

fRfﬁ(S)-Ndu du = J:f:(*()uzv + 6)dv du = f;(—ulﬁ +12) du = —72. R |

More About Orientation

Smooth Surfaces. If a surface S is smooth and P any of its points, we may choose a unit
normal vector n of S at P. The direction of n is then called the positive normal direction
of § at P. Obviously there are two possibilities in choosing n.

A smooth surface S is said to be orientable if the positive normal direction, when given
at an arbitrary point P, of S, can be continued in a unique and continuous way to the
entire surface.

Essential in practice is the fact that a sufficiently small portion of a smooth surface is
always orientable. From a theoretical point of view it is interesting that this may not hold
in the large. There are nonorientable surfaces. A well-known example of such a surface
is the Mobius strip6 shown in Fig. 227. When a normal vector, which is given at P, is
displaced continuously along the curve C in Fig. 227, the resulting normal vector upon
returning to Py is opposite to the original vector at Py. A model of a Mobius strip can be
made by taking a long rectangular piece of paper, making a half-twist and sticking the
shorter sides together so that the two points A and the two points B in Fig. 227 coincide.

Piecewise Smooth Surfaces. These can be oriented by using the following simple idea.
If S is smooth and orientable and is bounded by a simple closed curve C, we may associate
with each of the two possible orientations of S an orientation of C, as shown in Fig. 228a.
If S is piecewise smooth, we call it orientable if we can orient each smooth piece of §
in such a manner that along each curve C* which is a common boundary of two pieces
S and S, the positive direction of C* relative to S; is opposite to the positive direction
of C¥* relative to Ss.
Figure 228b illustrates the ideas for a surface consisting of two smooth pieces.

Another Way of Writing Surface Integrals (3) or (4)

Our discussion of orientation allows us to explain another way of writing (4). It is also
customary to write in (4)

(]

Fig. 227. Mobius strip

SAUGUST FERDINAND MOBIUS (1790—1868), German mathematician, student of Gauss, known
for his work in the theory of surfaces, projective geometry, and mechanics.




Orientation of piecewise Smooth Surfaces

If S is smooth and orientable and is bounded by a simple closed curve C, we may associate with each of the 2 possible orientations of S an orientation of C, as shown in Fig. 228a.
If S is piecewise smooth, we call it orientable if we can orient each smooth piece of S in such a manner that along each curve 
[image: image74.wmf]*

C

(which is a common boundary of two adjacent pieces 
[image: image75.wmf]1
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and
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) the positive direction of 
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C

relative to 
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 is opposite to the positive direction of 
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 relative to
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. 
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(a) Smooth surface

n

(b) Piecewise smooth surface

Fig. 228. Orientation of a surface




Integration Method II - 

If 
F = F1 i + F2 j + F3 k
It has been shown that the unit normal vector of the surface n can be expressed as


n = cos  i + cos  j + cos  k
where , ,  are the angles between n and positive x-, y- and z-axis, respectively. 
then
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 (Method II)
However, cos dA is the projection of dA (on surface S) onto yz-plane.  
In other words,


 EQ \i(,, )\d\ba8()\i(S,, ) F1(x, y, z) cos dA =   EQ \i(,, )\d\ba8()\i(S1,, ) F1(x(y,z), y,  z) dy dz
where S1 is the projection of S onto the yz-plane (beware of the orientation of the surface).  Note that the variable x in F1 shall be replaced in terms of y and z ( i.e., the surface is represented by x = x( y, z ). )  Similarly,


 EQ \i(,, )\d\ba8()\i(S,, ) F2 cos dA  =    EQ \i(,, )\d\ba8()\i(S2,, ) F2(x, y(x,z), z) dz dx

 EQ \i(,, )\d\ba8()\i(S,, ) F3 cos dA  =    EQ \i(,, )\d\ba8()\i(S3,, ) F3(x, y, z(x,y)) dx dy
where S2 and S3 are the projections of S onto zx- and xy-planes, respectively.  Thus, the surface integral can be calculated by the following method (again, beware of the orientation of the surface):


 EQ \x( \i(,, )\d\ba8()\i(S,, )F•n dA =  ± \i(,, )\d\ba8()\i(S1,, )F1 dy dz ± \i(,, )\d\ba8()\i(S2,, )F2 dz dx ± \i(,, )\d\ba8()\i(S3,, )F3 dx dy ) 
[Example]
Calculate 
 EQ \i(,, )\d\ba8()\i(S,, ) F•n dA

where  S:
y = x2, 0  x  2, 0  z  3 (parabolic cylinder)
(see Fig 225, p. 498 of the Textbook)


and      F:
F  =  y i + 2 j + x z k
[image: image83.png]



[Solution]

It is obvious from the Fig. 225 that the projections of S are:


S1 (yz-plane)
:
0  y  4  ;
0  z  3


S2 (zx-plane)
:
0  x  2  ;
0  z  3


S3 (xy-plane)
:
Zero projection area
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
 EQ \i(,, )\d\ba8()\i(S,, ) ÞEQÞ\i(,, )\d\ba8()\i(S,, )ÞF•n dA  =   (  EQ \i(,, )\d\ba8()\i(S1,, ) F1 dy dz    (   EQ \i(,, )\d\ba8()\i(S2,, ) F2 dz dx    (   EQ \i(,, )\d\ba8()\i(S3,, ) F3 dx dy



= +  EQ \i(0,3, )\i(0,4, ) y dy dz     EQ \i(0,2, )\i(0,3, ) 2 dz dx  +  0  






(Note the "  " sign in dz dx integration!!)



= 12

Integration Method III - Projection of the Surface 
In addition, if the surface integral  EQ \i(,, )\d\ba8()\i(S,, ) F•n dA  is written as:


 EQ \i(,, )\d\ba8()\i(S,, ) G(x, y, z) dA          (let G(x, y, z)= F•n)
over the surface S, since the element of the area of the surface can be represented by


dA = | ru ( rv | du dv  =  | N | du dv

we then have


 EQ \x( \i(,, )\d\ba8()\i(S,, )G(x, y, z) dA  =  \i(,, )\d\ba8()\i(S,, )G(u, v) | N | du dv ) (Method III)
[image: image85.png]



In addition, if the surface can be represented as 


z = f(x, y)

and that we set the parameter u and v as u = x, v = y.  The position vector of a point on the surface can be represented as


r = u i + v j + f( u, v ) k
the normal vector on the surface is then

N  =  ru ( rv  =  ( i + fu k ) ( ( j + fv k ) 




=  - fu i - fv j + k
or
| N |  =   EQ \r( 1 + fu2 + fv2 ) 
where  fu  =  fx  =   EQ \f((f, (x )   ,
fv  =  fy  =   EQ \f((f, (y )  .

Thus, the surface integral  EQ \i(,, )\d\ba8()\i(S,, ) G(x, y, z) dA  can then be calculated by


 EQ \x( \i(,, )\d\ba8()\i(S,, )G(x,y,z) dA  =  \i(,, )\d\ba8()\i(R,, )G(x,y,f(x, y)) \r( 1 + fx2 + fy2 ) dx dy ) 
where R is the projection area of S onto the xy-plane.
[Example]  Evaluate  EQ \i(,, )\d\ba8()\i(S,, ) G(x, y, z) dA over a paraboloid surface

where
            G  =  tan-1 (y/x)



S :    z = x2 + y2,  1  z  4,  0  x,  0  y

[image: image86.wmf]x**2+y**2
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[Solution]


 fx  =  2 x
;
  fy  =  2 y

thus


 EQ \i(,, )\d\ba8()\i(S,, ) G(x, y, z) dA = EQ \i(,, )\d\ba8()\i(R,, ) tan-1(y/x)  EQ \r( 1 + 4x2 + 4y2 )  dx dy

where, R can be expressed as: 
[image: image87.wmf]22
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Now change to the polar coordinate system, i.e., x = r cos,
y = r sin
thus,   tan-1(y/x)  =  tan-1( sin/cos)  =  tan-1 (tan)  =  

dx dy  =  r dr dwhere r is the Jacobian)
and
 EQ \r( 1 + 4x2 + 4y2 )   =   EQ \r( 1 + 4r2 ) 

 EQ \i(,, )\d\ba8()\i(R,, ) tan-1(y/x)   EQ \r( 1 + 4x2 + 4y2 )  dx dy  =   EQ \i(0,p/2, ) \i(1,2, )    EQ \r( 1 + 4r2 )   r dr d
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=   EQ \f(1, 12 ) ( 173/2 - 53/2 ) \f(1, 2 ) (\f(p, 2 ) )\s\up10(2) (  6.057

[Example]
Calculate the surface integral of the vector function



F = x i +y j
over the portion of
 the surface of the unit sphere  x2 + y2 + z2 = 1  above the xy-plane, i.e., z ( 0.
  EQ \i(,, )\d\ba8()\i(S,, ) F•n dA  =  ??

[image: image89.png](x,y,2) or (r,6,2)
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[Solution]



Method I - parametric representation

x =  cos u cos v  =cos cos(/2-

( r = 1 )

y =  sin u cos v = sin cos(/2-



z =  sin v= sin(/2-
0  u   2,  0  v  /2
(
r = cos v cos u i  +  cos v sin u j  +  sin v k
and
ru  =  - cos v sin u i  +  cos v cos u j

rv =  - sin v cos u i  -  sin v sin u j  + cos v k

N =  ru ( rv  
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= cos2v cos u i  +  cos2v sin u j  +  cos v sin v k

 EQ \i(,, )\d\ba8()\i(S,, ) F•n dA =  EQ \i(,, )\d\ba8()\i(S,, ) F•N du dv   =  

 EQ \i(,, )\d\ba8()\i(R,, )( cos v cos u i  +  cos v sin u j ) •



( cos2v cos u i  +  cos2v sin u j  +  cos v sin v k ) du dv



=  EQ \i(0,p/2, ) \i(0,2p, ) cos3v du dv =   EQ \f(4, 3 )  
Method III - by the method of projection surface on xy-plane
 EQ \i(,, )\d\ba8()\i(S,, ) G(x, y, z) dA  =   EQ \i(,, )\d\ba8()\i(R,, ) G(x, y, f(x, y))
[image: image91.wmf]22
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where  G  =  F•n
Since the surface is represented by


g(x)  =  x2 + y2 + z2 - 1  =  0

we have


n =   EQ \f((g, | (g | )   =  x i  +  y j  +  z k

G  =F•n  =  ( x i + y j )•( x i + y j + z k )  =  x2 + y2
In addition, the hemisphere surface can be represented by


z =  f(x,y)  =   EQ \r( 1 - x2 - y2 )    
( z ( 0 )

(
fx  =   EQ \f( - x , (1 - (x2 + y2))1/2 ) 
and
fy  =   EQ \f( - y , (1 - (x2 + y2))1/2 ) 

( 1 + fx2 + fy2 )  =   EQ \f( 1 , 1 - ( x2 + y2 ) ) 

 EQ \i(,, )\d\ba8()\i(S,, ) G(x, y, z) dA  



=   EQ \i(,, )\d\ba8()\i(R,, ) G(x, y, f(x, y)) 
[image: image92.wmf]22
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=   EQ \i(,, )\d\ba8()\i(R,, )( x2 + y2 )  \r( \f( 1 , 1 - ( x2 + y2 ) ) )   dx dy



=   EQ \i(0,2p, )\i(0,1, ) \f(r2, \r( 1 - r2 ) )   r dr d  =   EQ \f( 4 p ,3) 
where R is the projection of the hemisphere onto the xy-plane.

Method II  -  

 EQ \i(,, )\d\ba8()\i(S,, ) F•n dA  =  (  EQ \i(,, )\d\ba8()\i(S1,, )  F1 dy dz   (   EQ \i(,, )\d\ba8()\i(S2,, )  F2 dz dx   (   EQ \i(,, )\d\ba8()\i(S3,, ) F3 dx dy

where
F1 =  x,  
F2  =  y,
F3  =  0


 EQ \i(,, )\d\ba8()\i(S1,, )  F1 dy dz  = +   EQ \i(,, )\d\ba8()\i(S1,, )  x dy dz 

and
 EQ \i(,, )\d\ba8()\i(S2,, )  F2 dz dx  =  +  EQ \i(,, )\d\ba8()\i(S2,, )  y dz dx

Now that


 EQ \i(,, )\d\ba8()\i(S1,, )  x dy dz  =   EQ \i(,, )\d\ba8()\i( ,, )\r( 1 - (y2 + z2) )   dy dz



= 2  EQ \i(0,p, )\i(0,1, )\r( 1 - r2 )  r dr d
(Question:  Why "2"??)



=   EQ \f(  2 p  , 3 ) 
and
 EQ \i(,, )\d\ba8()\i(S2,, )  y dz dx  =   EQ \i(,, )\d\ba8()\i( ,, )\r( 1 - (x2 + z2 ) )  dz dx



= 2  EQ \i(0,p, )\i(0,1, )\r( 1 - r2 )  r dr d


=   EQ \f(  2 p  , 3 ) 

    EQ \i(,, )\d\ba8()\i(S,, ) F•n dA = =  (  EQ \i(,, )\d\ba8()\i(S1,, )  F1 dy dz   (   EQ \i(,, )\d\ba8()\i(S2,, )  F2 dz dx   (   EQ \i(,, )\d\ba8()\i(S3,, ) F3 dx dy
= +  EQ \i(,, )\d\ba8()\i(S1,, )  x dy dz +  EQ \i(,, )\d\ba8()\i(S2,, )  y dz dx + 0 =  EQ \f(  4 p  , 3 ) 
[Exercise]
Find the integral of  EQ \i(,, )\d\ba8()\i(S,, ) G(x, y, z) dA  where


G =  25 - x2 - y2

S  :  Hemisphere x2 + y2 + z2 = 16  with z ( 0.

[Answer]:  1441

[Exercise]  Evaluate  EQ \i(,, )\d\ba8()\i(S,, ) x z2 dA  where S is that portion of the cylinder y = 2 x2 + 1 in the first octant bounded by x = 0, x = 2, z = 4, and z = 8.
[image: image93.png]]
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[Hint]:  Since the surface is represented by y = y(x, z),  we can calculate the surface integral by projection of S onto the xz-plane.

Stokes's Theorem  
(Surface Integral ( Line Integral)

Recall that the Green's theorem on xy-plane is 
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Its vector form is
  EQ \i(,, )\d\ba8()\i(R,, )((´F) •k dx dy =  O EQ \d\ba9()\i(C, , ) F•dr        
[image: image95.wmf](
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where 

((F 
the curl of the vector function F

R 
the region in xy-plane

C 
the boundary (counterclockwise) of R
This theorem can be extended into 3-D space, i.e.,  Stokes's Theorem (proof is given in textbook).
 EQ \x( \i(,, )\d\ba8()\i(S,, )((´F)•n dA = O\d\ba9()\i(C, , )F•dr = O\d\ba9()\i(C, , )F•r'(s) ds ) 
where 

S 
a piecewise smooth oriented surface in space

C 
the boundary of S, a piecewise smooth simple curve

F 
the continuous vector function that has continuous first partial derivatives in S

n 
the unit normal vector of S

r'(s)     dr/ds is the unit tangent vector of the curve C

s 
the arc length of the curve C
[image: image96.png]



Formulas in Components: 
 EQ \x( \i(,, )\d\ba8()\i(S,, )((´F)•n dA = O\d\ba9()\i(C, , )F•dr = O\d\ba9()\i(C, , )F•r'(s) ds ) 
Since  
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Notice for 2-D Green’s Theorem, 
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[Example]  
[image: image101.png]



 EQ \x( \i(,, )\d\ba8()\i(S,, )((´F)•n dA = O\d\ba9()\i(C, , )F•dr = O\d\ba9()\i(C, , )F•r'(s) ds ) 
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[Example]  Find the work done by the force 
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 in the displacement around the curve of the intersection of the paraboloid 
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[Solution] 
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[Example]  Evaluate O EQ \d\ba9()\i(C, , ) F•dr where F = ( z - 2 y ) i + ( 3 x - 4 y ) j + ( z + 3 y ) k, 
and C is the unit circle on the plane z = 2.
[Solution]
Method I  (by line integral)
C can be represented by


r(t) = cos t i + sin t j + 2 k  with  0 ( t ( 2 
and
dr  =  ( - sin t i + cos t j ) dt

On the unit circle, the vector function F becomes


F =  ( z - 2 y ) i + ( 3 x - 4 y ) j + ( z + 3 y ) k 



=  ( 2 - 2 sin t ) i + ( 3 cos t - 4 sin t ) j + ( 2 + 3 sin t ) k
thus, 
F•dr  =  [ ( 2 - 2 sin t ) i + ( 3 cos t - 4 sin t ) j + ( 2 + 3 sin t ) k ] 




• [ ( - sin t i + cos t j ) dt ]



= (- 2 sin t + 2 sin2t + 3 cos2 t - 4 sin t cos t ) dt



= ( 2 - 2 sin t + cos2t - 2 sin 2t ) dt

 (
 O EQ \d\ba9()\i(C, , ) F•dr  =   EQ \i(0,2p, ) ( 2 - 2 sin t + cos2t - 2 sin 2t ) dt  =  5 
Method II (by surface integral )

We can also evaluate the integral via the Stoke's theorem:

 EQ \x( \i(,, )\d\ba8()\i(S,, )((´F)•n dA = O\d\ba9()\i(C, , )F•dr = O\d\ba9()\i(C, , )F•r'(s) ds ) 
where
n =  k

((F = 
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Thus,
   EQ \i(,, )\d\ba8()\i(S,, )((´F)•n dA  =   EQ \i(,, )\d\ba8()\i(S,, ) 5 dA   = 5 
is the area of unit circle)
4
Volume Integral (Triple Integral)

[image: image111.emf]
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The volume integral can be written as


 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) F(x,y,z) dV  =   EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) F(x,y,z) dx dy dz

- RCC

or
 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) F(r,,z) dV  =   EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) F(r,,z) r dr d dz

- Cylindrical Coordinate
or
 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) F(r,,) dV  =   EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) F(r,,) r2 sin dr d d
- Spherical Coordinate
[Example]
 
Evaluate the volume of the object in the first octant bounded by the surfaces of z = 1 - y2, y = 2 x, and x = 3. (
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[Solution]

The volume can be calculated by


V =   EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) dV  =   EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) dx dy dz

or
V  =   EQ \i(0,1, )\i(y/2,3, )\i(0,1-y2, )  dz dx dy



=   EQ \i(0,1, )\i(y/2,3, )(1 - y2)  dx dy



=   EQ \i(0,1, )\b\bc\[( x - x y2 )\b\lc\|(\a(3, ,y/2)) dy


=   EQ \i(0,1, )( 3 - 3y2 - y/2 + y3/2 )  dy



=   EQ \f(15, 8 ) 
5
Divergence Theorem of Gauss and Its Variations

Divergence Theorem of Gauss

Recall the second vector form of Green's theorem:


 EQ \i(,, )\d\ba8()\i(R,, ) (•F dx dy  =  O EQ \d\ba9()\i(C, , ) F•n ds

which relates the surface integral and (closed) line integral.  
The divergence theorem of Gauss states that (proof in the textbook!)

 EQ \x( \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, )(•F dV  =  O\d\ba10()\i(,, )\d\ba8()\i(S,, )F•n dA ) 
where


F:
a differentiable continuous vector function (
[image: image115.wmf]:  divergence of 
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)

V:
a closed bounded region (domain)


S:
piecewise smooth boundary surface of V


n:
outward unit normal vector to S

Remarks:

If F = F1 i + F2 j + F3 k,  and n =  cos i + cos j + cos k, where ,  and  are the angles of n between positive x-, y-, and z-axes, respectively.  Then


 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, )\b\bc\{( \f((F1, (x ) + \f((F2, (y ) + \f((F3, (z ) )  dx dy dz



=  EQ \i(,, )\d\ba8()\i(S,, )( F1 cosa + F2 cosb + F3 cosg )  dA
[Example]  
F = 7 x i - z k

S :
x2 + y2 + z2  =  4

Please evaluate  EQ \i(,, )\d\ba8()\i(S,, ) F•n dA

[Solution] 

Method I - Use the parametric representation of S: 
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S  :
r  =  2 cos v cos u i  +  2 cos v sin u j  +  2 sin v k


ru  =  - 2 cos v sin u i  +  2 cos v cos u j


rv  =  - 2 sin v cos u i  -  2 sin v sin u j  +  2 cos v k
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N = ru ( rv
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n =  N/|N|  =  cos v cos u i + cos v sin u j + sin v k

F•n  =  14 cos2v cos2u - 2 sin2v

(
 EQ \i(,, )\d\ba8()\i(S,, ) F•n dA  =   EQ \i(,, )\d\ba8()\i( ,, ) F•N du dv  =   EQ \i(,, )\d\ba8()\i( ,, ) F•n |N| du dv



= 64 
  Method II - Use the divergence theorem:


 EQ \i(,, )\d\ba8()\i(S,, ) F•n dA =  EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) (•F dV  

Since


(•F =   EQ \f((Fx, (x )   +   EQ \f((Fy, (y )   +   EQ \f((Fz, (z )   =  7 - 1  =  6


 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) (•F dV =  EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) 6 dV  =  6 V  =  6   EQ \f(4, 3 )   23  =  64 
[Example]
Calculate the surface integral of the vector function



F = x i + y j
over the portion of the surface of the unit sphere  x2 + y2 + z2  =  1  above the xy-plane, z ( 0.

[Solution]

This surface integral has been evaluated previously.  Here we'd like to calculate it again via divergence theorem.  Note that the divergence of F is


(•F =  EQ \f((Fx, (x )   +  EQ \f((Fy, (y )   +  EQ \f((Fz, (z )   = 2

According to the Divergence Theorem, we thus have


 EQ \i(,, )\d\ba8()\i(S,, ) F•n dA  =  EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) (•F dV  =  EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) 2 dV  



= 2 (volume of the hemisphere)  



= 2  EQ \f(1, 2 )  \f(  4 p  , 3 )   =   EQ \f(  4 p  , 3 ) 
However, the boundary surface of the hemisphere includes not only the surface of the unit sphere  x2 + y2 + z2  =  1  above the xy-plane S1, but also the circular disk surface bounded by the x2 + y2  1 on the xy-plane S2.  i.e.,


 EQ \i(,, )\d\ba8()\i(S,, ) F•n dA =   EQ \i(,, )\d\ba8()\i(S1,, ) F•n dA  +   EQ \i(,, )\d\ba8()\i(S2,, ) F•n dA
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Note that the outward unit normal vector of the surface S2 is


n = - k
(
F•n  =  ( F  =  x i  +  y j )•( - k )  =  0

(
 EQ \i(,, )\d\ba8()\i(S2,, ) F•n dA =  0

 EQ \i(,, )\d\ba8()\i(S1,, ) F•n dA  =   EQ \i(,, )\d\ba8()\i(S,, ) F•n dA  -    EQ \i(,, )\d\ba8()\i(S2,, ) F•n dA  =   EQ \f(  4 p  , 3 ) 
[Example]
Compute   EQ \i(,, )\d\ba8()\i(S,, ) F•n dA  where  F  =  x2 i + 2 y j + 4 z2 k 
and S is the surface of the cylinder x2 + y2  4,  0  z  2.

[Solution]

Note that the surface S is the closed surface consisting of 
1. the cylinder x2 + y2 = 4 (0  z  2) 
2. the circular disk z = 0 (where x2 + y2 4) and 
3. the circular disk z = 2 (where x2 + y2 4).  
Since


 EQ \i(,, )\d\ba8()\i(S,, ) F•n dA =   EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) (•F dV

and
(•F  =  2 x + 2 + 8 z

(
 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) (•F dV =  EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, )( 2 x + 2 + 8 z )  dx dy dz


=  EQ \i(0,2, )\i(0,2p, )\i(0,2, )( 2 r cosq + 2 + 8 z )  r dr d dz


= 80 
Some Important Identities 

(•v = (•v + v•(

((v = ((v + ((v

(•(u(v)  =  v•((u - u•((v

(( (u(v)  = v•(u - u•(v + u((•v) - v((•u)


((u•v)  = u•(v + v•(u + u( (((v) + v( (((u)


(( (()  = curl grad  = 0

(•(((v)  =  div curl v  =  0


(( (((v)  = curl curl v = (((•v) - (•((v)




= grad div v - (2v

(•((1((2)  =  0

Note that here v•(u   (  EQ \b\bc\{( vx\f(( ,(x) + vy\f(( ,(y) + vz\f(( ,(z) )  u
Various Forms of Divergence Theorem  EQ \x( \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, )(•F dV  =  O\d\ba10()\i(,, )\d\ba8()\i(S,, )F•n dA ) 
[Example]
Show that   EQ \x( \i(,, )\d\ba8()\i(S,, )n´F dA  =  \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, )(´F dV ) ( Curl Theorem ) 
[Proof]


Apply divergence theorem to the vector F(C:

 EQ \i(,, )\d\ba8()\i(S,, ) n•(F(C) dA  =   EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) (•(F(C) dV

where C is a constant vector.  But from the following two identities

n•(F(C)  =  ( n F C )  =  (n(F)•C  =  C•(n(F)

and
(•(F(C)  =  C•(((F)  F•(((C)  =  C•(((F)  

(From identity (•(u(v)  =  v•((u - u•((v and, since C is a constant vector, ((C =  0)


 EQ \i(,, )\d\ba8()\i(S,, ) n•(F(C) dA  =   EQ \i(,, )\d\ba8()\i(S,, ) C•(n(F) dA  =  C• EQ \i(,, )\d\ba8()\i(S,, )(n´F)  dA

and
 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) (•(F(C) dV  =  C•  EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) ((F dV

thus, from the divergence theorem,


C• EQ \i(,, )\d\ba8()\i(S,, )(n´F)  dA  =  C•  EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) ((F dV

If the above identity is valid for an arbitrary constant vector C, we need


 EQ \i(,, )\d\ba8()\i(S,, ) n(F dA  =   EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) ((F dV

(q.e.d.)

 EQ \x( \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, )(•F dV  =  O\d\ba10()\i(,, )\d\ba8()\i(S,, )F•n dA ) 
[Example]
Prove that
 EQ \x( \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, (f) dV  =  \i(,, )\d\ba8()\i(S,, )f n dA ) 
(Gradient Theorem)

[Proof]

Define
 F = C
where C is a constant vector.


(•F =(•(C)  =  (•C + C•(  =  C•(



(from identity (•v = (•v + v•(and (•C = 0 )

and
F•n  =   C•n
thus the Divergence Theorem  EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) (•F dV  =   EQ \i(,, )\d\ba8()\i(S,, ) F•n dA    becomes


 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, C•(f)  dV  =   EQ \i(,, )\d\ba8()\i(S,, )  C•n dA

or
C•  EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, (f)  dV  =  C•  EQ \i(,, )\d\ba8()\i(S,, )  n dA

Since C is an arbitrary constant vector, we need


 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, (f)  dV  =   EQ \i(,, )\d\ba8()\i(S,, )  n dA

 EQ \x( \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, )(•F dV  =  O\d\ba10()\i(,, )\d\ba8()\i(S,, )F•n dA ) 
[Example]   Prove the Green's first formula and Green's second formula, i.e.,


 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, )( f (2g + (f•(g )  dV =   EQ \i(,, )\d\ba8()\i(S,, ) f  EQ \f((g, (n )  dA


 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, )( f (2g - g (2f )  dV  =   EQ \i(,, )\d\ba8()\i(S,, )( f \f((g, (n )  -  g \f((f, (n )  )  dA

where n is the outward unit normal vector to the surface S.

[Proof]  

(1)
Let
F = f (g

(•F = (•( f (g )  =  f (2g  +  (f•(g   

(from identity (•v = (•v + v•(
F•n = n•( f (g )  =  f ( n•(g )

where 


n•(g  =  directional derivative of g in the direction of n



=   EQ \f((g, (n ) 

 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, )( f (2g + (f•(g )  dV =   EQ \i(,, )\d\ba8()\i(S,, ) f  EQ \f((g, (n )  dA              
(A)

(2)
Similarly, we have



 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, )( g (2f + (g•(f )  dV  =   EQ \i(,, )\d\ba8()\i(S,, ) g  EQ \f((f, (n )  dA            
(B)

(A) - (B)
(

 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, )( f (2g - g (2f )  dV  =   EQ \i(,, )\d\ba8()\i(S,, )( f \f((g, (n )  -  g \f((f, (n )  )  dA

 [Exercise]  If (2 = 0  everywhere in a region V bounded by a closed surface S, show that

(1)
 EQ \i(,, )\d\ba8()\i(S,, )\f((f, (n )  dA  =  0


( Hint:  EQ \x( \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, )(•F dV  =  O\d\ba10()\i(,, )\d\ba8()\i(S,, )F•n dA )   and Let F = ( )

(2)
 EQ \i(,, )\d\ba8()\i(S,, )   EQ \f((f, (n )  dA  =   EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, )((f) 2 dV


where (()2  =  (((.
(Hint:  EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, )( f (2g + (f•(g )  dV =   EQ \i(,, )\d\ba8()\i(S,, ) f  EQ \f((g, (n )  dA and 
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[Exercise]
Show that

(1)
 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) (2 dV  =   EQ \i(,, )\d\ba8()\i(S,, )\f((f, (n )  dA
(Hint:  EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, )( f (2g + (f•(g )  dV =   EQ \i(,, )\d\ba8()\i(S,, ) f  EQ \f((g, (n )  dA and 
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(2)
 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, )( f(2f + ((f)2 )  dV  =   EQ \i(,, )\d\ba8()\i(S,, )   EQ \f((f, (n )  dA
(Hint:  EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, )( f (2g + (f•(g )  dV =   EQ \i(,, )\d\ba8()\i(S,, ) f  EQ \f((g, (n )  dA and 
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(3)
 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) [ (4 - ((2)2 ] dV  =   EQ \i(,, )\d\ba8()\i(S,, )( f \f(((2f, (n )  -  ((2f) \f((f, (n ) )  dA

where (4  =  (2((2)
(Hint:  EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, )( f (2g - g (2f )  dV  =   EQ \i(,, )\d\ba8()\i(S,, )( f \f((g, (n )  -  g \f((f, (n )  )  dA and 
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� 	Example from Zill, D. G., and Cullen, M. R., Advanced Engineering Mathematics",  p. 186, (1992).
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n, outward unit normal vector







r, position vector x i + y j 







Curve C
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